Information in puantum meckanics.
ND.Mermin "Auanturn Computer Science. An Intaduction Ganbridje Univ. Press (2007)
Classical "bit" Is the smallest unit of classical info. It represents the information which we gain when we receve the defrite answers "tes "or "No"ts a guestron about which we had no prion know le dfy.
Bit of info is represented nathematicalf as bimery dyit "oor"
nighllow curvent in transistors, ate.
It is robust gainst the licejecte of noise (if hè noise I small compared to the difference in signal strength) (two possibl encodry of math. bit is a phepe bit "0"Engh oll Shiybllow or ofl - Cowhigh
Qubits.
two-state guastun systen (2sstit Milbert siace) All two -stale suanturs gystems, are mathematically quivalent to a spin-i/L particle in a magnetic field
ticil ie the vansition requency tron ground state tos to excited stite 11)
the most generd, measurement robection ster-Gerlach "peasurenest) "the measurement of spinproyection along asingle ax,y $万^{7}$

$$
\hat{0}=\hbar \vec{\sigma}
$$

$\hat{Q}^{2}=I \quad \Rightarrow$ aipe, values $Q= \pm 1$
(Ths messsurcemest gues ues 1 bit of information \Rightarrow
conem Il uno unimngaanesen maniaboewm denolition)

 nocactponee ugneprare beas tor the eland uquepervol.

（uan by）pepyasiai onps ffeer crymainin（ 1 um -1 c（2） 50\％bepartiociso）

$$
\begin{aligned}
& \text { 证事 } \\
& \omega_{x} \sigma_{x}+\omega_{y} \sigma_{y}+\omega_{z} \sigma_{z}=\left(\begin{array}{cc}
0 & \omega_{x} \\
\omega_{x} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i \omega_{y} \\
i \omega_{y} & 0
\end{array}\right)+\binom{\omega_{z}}{0-\omega_{z}} \\
& =\left(\begin{array}{cc}
\omega_{z} & \omega_{x}-i \omega_{y} \\
\omega_{x}+i \omega_{y} & -\omega_{z}
\end{array}\right)= \\
& \omega_{z}=\ln / \cos \theta \\
& \omega_{x}=\ln / \sin \theta \cos \varphi \\
& \omega_{y}=1 \omega / \sin \theta \sin \varphi \\
& \omega_{x}-i \omega_{y}=1 \omega 1(\sin \theta \cos \varphi-i \sin \theta \sin \varphi)= \\
& =100 / \sin \theta e^{-1 \varphi} \\
& =10 /\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \varphi} \\
\sin \theta e^{i \rho} & -\cos \theta
\end{array}\right) \\
& \left|\phi_{+}\right\rangle \Rightarrow\binom{\cos \theta \sin ^{i n} e^{-i \varphi}}{\sin \theta e^{i \varphi}-\cos \theta}\binom{v_{+}}{v_{+}}=\binom{L_{+}}{v_{+}} \\
& \cos \theta u_{r}+\sin \theta e^{-i \rho} v_{+}=c_{t} \quad \sin \theta e^{-i \varphi} v_{+}=u_{+}(1-\cos \theta) \\
& \sin \theta e^{i \varphi_{4}}-\cos \theta V_{+}=V_{+} \quad(1+\cos \theta) v_{+}=\sin \theta e^{1 / t_{4}} a_{+} \\
& \left(\begin{array}{cc}
\cos \theta-1 & \sin \theta e^{-i \rho} \\
\sin \theta e^{i \rho} & -\cot \theta-1
\end{array}\right)\binom{u_{+}}{v_{+}}=0 \\
& \operatorname{det}()=1-\cos ^{2} 2-\sin ^{2} 2=0 \\
& \text { noparpobice. } \\
& u_{+1} 1^{2}+n_{+1}^{2}=1 \\
& u_{x}=\frac{\sin t}{-\cos \theta} e^{-i \phi} v_{x}= \\
& =\frac{2 \sin 2 \cos \theta}{2 \sin ^{2} \theta} e^{-1 \varphi} v_{+} \\
& u_{t}=\frac{\cos \hat{2}}{\sin \frac{\theta}{2}} e^{-i y} v_{+}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
v_{1} 1^{2}=\sin ^{2} \hat{\sin \theta} \\
v_{t}=e^{i \alpha} \sin \frac{\theta}{2}
\end{array} \\
& \begin{array}{l}
v_{1} 1^{2}=\sin ^{2} \hat{\sin \theta} \\
v_{t}=e^{i \alpha} \sin \frac{\theta}{2}
\end{array} \\
& \frac{\left(v_{+}\right)^{2}}{\sin ^{2} \theta}=1
\end{aligned}
$$

Hosno bsispas e $\alpha=\frac{\varphi}{2}$

Plyen

$$
\begin{aligned}
& \theta=\varphi=0 \\
& H=\frac{\hbar \omega}{2} G_{z}
\end{aligned}
$$

$$
\frac{4}{4}=\left(\psi_{+}\right\rangle=\binom{1}{0}
$$

$$
\left\langle\psi_{-}\right\rangle=\left(\frac{\text { 里 }}{\substack{\text { An }}}\right) \equiv
$$

$$
\left(\frac{9}{4}\right)=1
$$

We need two real numbers $\{\theta$ and y) $t o$ specify he puantum
itate of spin. It means thmt an infinite number of classical
We need two real numbers $\{\theta$ and y) do specifg the puantant
itate of spin. It means that an infinite number of classical dits is needed to nescribe pub-t Dn other hand we
\square
Eeki only
theorin measurements. Ahis hape asgmmenty is a bey concept of our crnderstanduy of suantum info.
Mbl ztay toyno fnaen kakon cocophum hatoguity cruth noere ufruperns: tnS was tkJ, Ho upmepence me paèr oteis b

 Po-cloning theoren "I Wootfers, Eurek (c98)
quitif cannot be cloned.! "A siugle fuantum cannot be cioned" Nature 255, 822803
fyen mi umeern haw "r qubit b ochobron coovornuen it merflecinst man kybut

Plocac knarupolatec?
 lumeŕmsin oncpatypon
/LC) = C/t ynu tron Hebopenotmo noplaewue helvutheduxx hatglupuerioh.
 Mu, neZts ess KMoumpigen, ncwonspys Koukperiss onepanop Honcyu* $\left(\sigma_{0}, s_{0}\right)$
Known states are cannot be!

$$
\begin{aligned}
& \left.\left.\left\langle\ell_{c}\right\rangle=(\alpha|0\rangle+\beta / 1)(\alpha / 0)+\beta / 1\right\rangle\right)= \\
& =\alpha(00)+\alpha \beta(01)+\alpha \phi \theta(10)+\mu^{2}(11)
\end{aligned}
$$

In quantan telemertation protocol as unterow stite (4) ir perfectly reproducab at a distont loatim. This "is not rustricted Glastoyo-clang theorem" because the eripinal stite in Dlestoyed turing the pacess of telforben

 quantifatio
cuantizetion
qubits measurement ofy "z" and "未"" evantizetion axis.
Treasure department hnows honeforthet wame oce dousblams

 pollaH, tmSas nogpenks Satuentis Sopzer bcerga bsigblareice.

Densig ratix of pubit．

$$
\begin{aligned}
& \hat{\rho}_{Q \theta}=\beta^{2} \alpha\left(\alpha^{\Delta}\right)\left(\beta^{4} \alpha^{\alpha}\right)=\left(\begin{array}{cc}
(\beta)^{2} & 1 \alpha^{\alpha} \\
\beta^{2} \alpha & 1 \alpha)^{2}
\end{array}\right) \\
& \nRightarrow A \hat{\rho}=1 \Leftrightarrow\langle 4 \mid 4\rangle=1 \\
& \hat{\rho}^{2}=|\psi\rangle\langle\psi \mid \psi\rangle\langle\psi|=\langle\psi\rangle\langle\psi|=\hat{S}
\end{aligned}
$$

olean state $\left|\begin{array}{l}\underline{I} \\ \vec{S}_{c}^{m}\end{array}=\hat{S}_{c}\right| \Rightarrow \hat{S}_{c}^{m}=1$
For mived storte $n, \quad \hat{\rho}=Z_{j}^{\prime} p_{j}|e \cdot\rangle\langle g|=\left(\right.$ 是 \cdots_{N} ）

$$
\begin{aligned}
& \operatorname{Tr}_{r} \vec{S}_{n}=1 \quad \sum_{j=1}^{N} p_{j}=1 \\
& \text { Tr } \hat{\rho}_{n}^{2}=\text { 不 }\left(\begin{array}{ll}
p_{i}^{2} & \cdots \\
\therefore \rho_{j}^{2}
\end{array}\right)=\sum_{j=1}^{N} p_{j}^{(2)}<1 \\
& \hat{\rho}=\frac{1}{2}\left(I+\vec{\beta}_{\vec{\sigma}}^{2}\right) \quad \hat{\rho}_{c}^{2}=\dot{F}\left(I+2(\hat{\rho} \vec{\theta})+(\hat{p} \vec{\sigma})^{2}\right)= \\
& =\frac{1}{4}(\bar{P}+\vec{P} I+2(\vec{p}-\vec{y}))=\hat{\xi_{2}} \\
& \vec{P}^{2}=1 \rightarrow(\theta, \varphi) \text {, } \\
& \text { on Blach } \\
& \text { splese. } \\
& \hat{S}_{m} \Rightarrow \hat{P}^{2}<1
\end{aligned}
$$

Spin correlations in entangled states
sell basis

$$
\begin{array}{ll}
\text { Sell basis } \\
\left.\left|B_{0}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle-\| \downarrow\rangle\right) & \left\langle B_{j} \cdot \mid B_{\eta}\right\rangle=\sigma_{j k} \\
\left.\left|B_{1}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \psi+| \psi \uparrow\rangle\right) & \\
\left|B_{2}\right\rangle=\frac{1}{\sqrt{2}}(-|\uparrow \uparrow\rangle+|v\rangle) & \\
\left|B_{3}\right\rangle=\frac{1}{\sqrt{2}}(-|\uparrow \psi\rangle-\| v\rangle & \text { of } 2 \text {-quits }
\end{array}
$$

bell basis span full Hilbert space of 2 -eubits (1)4) Arg state can be expressed, in terms of bell basis vectors

$$
\begin{aligned}
& -|\lambda \uparrow\rangle=\frac{1}{\sqrt{2}}\left(\left|s_{2}\right\rangle+\left|B_{3}\right\rangle\right) \\
& \text { product state } \\
& |\uparrow\rangle \text { "| }|\uparrow\rangle
\end{aligned}
$$

Boll states are maximally entangled.

$$
\begin{array}{ll}
\left.\quad \begin{array}{l}
m
\end{array}\left|\sigma^{d}\right| B_{n}\right\rangle=0,1,2,3 \\
j & =x, y, z \\
h & =1,2 .
\end{array}
$$

$$
\sigma_{x}|\uparrow\rangle=|v\rangle \quad \sigma_{y}|l\rangle=|\eta\rangle \left\lvert\,=\frac{1}{\sqrt{2}}\left\langle B_{0} \mid B_{3}\right\rangle=0\right.
$$

However spins in entangled states are strongly correlated no summation over "j"

$$
\left\langle\left. B_{0} / \sigma_{j}^{(1)}\left(B_{Q}\right)=-1 \quad\left\langle\frac{B_{0}}{\circ}\right| \vec{\sigma}(1) \vec{\sigma}(2) \right\rvert\, B_{0}\right\rangle=-3
$$

the instance f

$$
\begin{aligned}
\left.\left.\frac{\sqrt{2}_{2}^{\prime}}{}\left\langle B_{0}\right| \sigma_{x}^{(1)} \sigma_{x}^{(2)}(|\uparrow \downarrow\rangle-|\psi\rangle\rangle\right)=\frac{1}{\sqrt{2}}\left\langle B_{0} \mid(|V\rangle\rangle-\mid \uparrow \downarrow\right\rangle\right) & =-\left\langle\sigma_{0}\right|\left(A_{0}\right) \\
& =-1
\end{aligned}
$$

Problem. to verify spenpetationv $<$ to $\left./ \sigma(1) \sigma(a) / s_{0}\right)=-3$

T. S. Bede wequalit (1564

Corvelation between measarement results for entaufled statee are stronget than an nissiblepcovelations that can be induced by local "indaten" viriable.
 PRL, EMSG.
"Alice" uses Eardinate syster "A" to measure qubit "Tob" uses coordinate. susten "S" o neasmie "gublet
They share a parr of entaupled pubits.
After many Arials (each trial for, a fresh copy of

$$
S^{\prime}=\left\langle(x+z) x^{\prime}\right\rangle-\left\langle(x-z) z^{\prime}\right\rangle \quad\langle x\rangle
$$

Results of measurements \Leftrightarrow randoun numbers cither it or - I In particular trial "A" chooses randonly "Xt"or "Z" (Classicily the qubit not measured sitill has a walue either +1 or $-1 \Leftrightarrow$ then cithe $x=z$ or ' x ' $=-2$ "
 hergnelas romsurayur (myan $x=2 \quad 5=2\left\langle x x^{\prime}\right\rangle=$ $\sigma_{x}^{(11)} \sigma_{x}^{(2)} \Rightarrow \leq 1$

$$
x^{x}=\frac{x}{x}(x+z)
$$

Cassical bound for

$$
\begin{aligned}
& \text { on Corvelation function is } \\
& \sigma_{x}^{\prime}=\sqrt{2}\left(\sigma_{x}+\sigma_{z}\right) \quad \sigma_{z}^{\prime}=\frac{r}{2}\left(-\sigma_{x}+\sigma_{z}\right) \\
& S=\frac{1}{2}\left\{\langle(x+z)(x+z)\rangle^{z}-\langle(x-z)(-x+z))=\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{2}(|x|+\mid z z)\rangle \Rightarrow \text { tor selestate }\left|3_{p}\right\rangle
\end{aligned}
$$

 have values
Qxo tex, nop nolna mst he mpobogun ufseperus
newlit (u'noser myras velanwlas cucoces) ne

Quantum Measuremests
1). measurement-induced decoherence 2). back-action

Consider Stern -Gerlach experiment. measurenent of -efectan spin-projection by separativy spin-t and sin-doun electrons in shace Cusing grochiest of ungnetic
 reogmogynom raruinon none

S inacrugecules troperv
 noumboe seoe woyer unes isofoe frotreme)
(llak, naveansmirt kerap coonsmiso Gyeratuct sfate)

$$
(\psi|\psi=(\alpha \mid \psi)+\beta| \psi)) f(\mu)
$$

$$
\begin{aligned}
& |\alpha|^{2}+|\beta|^{2}=1 \\
& \text { fotrlf(c)| }\left.\right|^{2}=1 \\
& \left.<\left|f f^{\prime}\right|\right)=1 \\
& \text { (entanpled state) }
\end{aligned}
$$

reduced dim, for spin degree of freectorn

$$
\begin{align*}
& =\left(\begin{array}{cc}
\alpha 1^{2} & \alpha \beta^{*} \\
\alpha^{*} \beta & |\beta|^{2}
\end{array}\right)
\end{align*}
$$

$$
\begin{aligned}
& \text { taijen apgaane noekrgus anems }
\end{aligned}
$$

$$
\begin{aligned}
& =2 \operatorname{Re}\left(\alpha^{*}, s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\sigma_{z}\right\rangle=\operatorname{Tr} \sigma_{z} \rho_{i}=|\alpha|^{2}-|\beta|^{2} \\
& =2 \operatorname{Im}\left(\alpha^{x} \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
\rho\left(r, r^{\prime}\right) & =|\psi(r)\rangle\left\langle\psi\left(r^{\prime}\right)\right|= \\
& =\left(\begin{array}{cc}
|\alpha|^{2} f_{\lambda}(r) f_{*}^{*}\left(r^{\prime}\right) & \alpha \beta^{*} f_{\lambda}\left(r^{\prime} f_{V}^{*}\left(r^{\prime}\right)\right. \\
\alpha^{*} p f_{\pi}^{*}(r) f_{V}\left(r^{\prime}\right) & |\beta|^{2} f_{k}(r) f_{L}^{*}\left(r^{\prime}\right)
\end{array}\right)
\end{aligned}
$$

Uneondifional reduced densily matrix

$$
\begin{aligned}
& f_{v x}=\int d r f_{v} \operatorname{cof}_{x}^{*}(r)=f_{k}^{*} \\
& \rightarrow \text { antarar neperysuras } \\
& \text { nrocquancleutrars pacrugenimes } \\
& \text { merary-lonisix no cintry } \\
& \text { y=uch }
\end{aligned}
$$ crelleatition cocnorins (measurenent-induced teplasing)

$$
\begin{aligned}
& \text { llooguinats } P \\
& f_{c}(R)=\frac{1}{P(P)}\left(\begin{array}{cc}
|\alpha|^{*} f_{\pi}(R)^{2} & \alpha \beta_{*}^{*} f_{r}(R)_{L}^{*}(R) \\
\alpha_{s}^{*} f_{r}^{*}\left(R f_{V}(R)\right. & |\beta|^{2}\left|f_{L}(R)\right| L
\end{array}\right) \\
& \text { conditional }
\end{aligned}
$$

$$
P(R)=|d|^{2} f_{r}(l)^{L}+|p|^{2} / f(k)^{2}
$$

 obecneinlaer \quad Ir $\rho_{C}(R)=1$

$$
\begin{aligned}
& p_{p e} \text { Orebgeno, 4o } \\
& S_{4}=\rho_{\text {dR }} P_{R}\left(\rho_{c}(R)\right.
\end{aligned}
$$

Majress $S_{c}(R)$ onucsilact yucnoe cacobntume Defichurtatio

$$
\rho_{c}=\left|\psi_{c}\right\rangle\left\langle\psi_{c}\right|, \mu_{c} \quad\left|\psi_{c}\right\rangle=\frac{1}{\sqrt[p(p)]{ }}\left(\alpha_{c}|\eta\rangle<\rho_{c}|v\rangle\right.
$$

$$
\alpha_{c}=\frac{\alpha}{f_{1}(p)}, s_{c}=\beta_{k}(p)
$$

No, byuns, un f pegyosiate yzmeperap bersop coconnurs úmenuect

$$
\left.\left.1 \psi_{i}\right\rangle \underset{\text { measurement }}{\rightarrow} \quad 1 \psi_{c}\right\rangle\{
$$

bas yuneneme (bominobos tyenryu.) syulacies, rack action"
B hotorn cocosinum (iblie ugnepema)

$$
\begin{aligned}
\left\langle\sigma_{x}\right\rangle & =\frac{2}{R(R)} R e\left(\alpha_{c}^{*} \beta_{c}\right) \\
\left\langle\sigma_{y}\right\rangle & =\frac{2}{P(R)} \operatorname{In}\left(\alpha_{c}^{*} \beta_{c}\right) \\
\left\langle\sigma_{t}\right\rangle & =\frac{1}{P(R)}\left(\left|\alpha_{c}\right|^{2}-\left|\beta_{c}\right|^{2}\right)
\end{aligned}
$$

Weak measurement $f_{\pi}(W) \sim f_{v}(r)$ (bnck action is
Stromp measurenent $f_{x}\left(a f_{t}(m) \rightarrow 0\right.$

$$
\left\{\begin{array}{l}
\left\langle\sigma_{x}\right\rangle=0 \\
\left\langle\sigma_{y}\right\rangle=0 \\
\left\langle\sigma_{z}\right\rangle=-1
\end{array}\right.
$$

\rightarrow shom back action

$$
\left(\begin{array}{lll}
\text { at" with probabilig }\left.b\right|^{2} \\
\text { i-" } \\
\hline \text { " }
\end{array}\right)
$$

